Today (Tuesday 7 April) Raviv Gal, NRRV PhD-student, will give a seminar entitled Mussels and ecosystem functioning in streams. The Seminar is held online via the video conference system zoom.

You can follow the seminar by clicking here.

The seminar starts at 13:15, everyone who wants to is welcome to attend the seminar.

Freshwater pearl mussels (Margaritifera margaritifera) in the River Vasslabäcken.

Two papers in Animal Conservation

Posted by Karl Filipsson | Papers

Two papers from NRRV were recently published in the journal Animal Conservation. The first paper presents a field study on how sedimentation affects brown trout (Salmo trutta) fry emergence in relation to freshwater pearl mussel (Margaritifera margaritifera) recruitment. The second paper presents a combined field and laboratory study on passage solutions for upstream-migrating eels (Anguilla anguilla).

 

Sedimentation affects emergence rate of host fish fry in unionoid mussel streams

Martin Österling

 

In the abstract, the author writes:

Freshwater pearl mussel, Margaritifera margaritifera

“Free-living, sympatric sedentary life stages of hosts and parasites are often adapted to similar environmental conditions. When the environment where these life stages occur is disturbed, both species can decline, causing strong negative effects on the parasitic species. For the highly threatened unionoid mussels with their larval parasitic life stage on fish, habitat degradation may simultaneously affect the conditions for the sedentary host fish eggs and the juvenile mussels in the sediment. This study provides novel information on the effect of sedimentation on the emergence rate of yolk sac fry, and its relation to mussel recruitment in two drainage basins, and is exemplified by the brown trout Salmo trutta, host fish for the threatened freshwater pearl mussel Margaritifera margaritifera. The results imply that turbidity and sedimentation can reduce the survival of trout eggs and yolk sac fry emergence rate regardless of trout strain and drainage basin. The results further suggest that low yolk sac fry emergence rates reduce the potential for mussel infestation and recruitment. The results indicate a year round negative effect of sedimentation, having strong and combined direct and indirect effects on juvenile mussel recruitment. Conservation measures that reduce anthropogenic sediment transportation into streams are a key factor for the conservation of mussels and their host fish.”

Access the paper here, or contact the author.

 

Climbing the ladder: an evaluation of three different anguillid eel climbing substrata and placement of upstream passage solutions at migration barriers

Johan Watz, Anders Nilsson, Erik Degerman, Carl Tamario and Olle Calles

 

European eel, Anguilla anguilla. Photo: Jörgen Wiklund

In the abstract, the authors write:

“Conservation programmes for endangered, long-lived and migratory species often have to target multiple life stages. The bottlenecks associated with the survival of juvenile anguillid eels migrating into inland waters, the survival and growth of the freshwater life stage, as well as the recruitment and survival of silver eels, migrating back to the ocean to spawn, must be resolved. In this study, we focus on the efficiency of passage solutions for upstream-migrating juveniles. Such solutions can consist of inclined ramps lined with wetted climbing substrata. We evaluated different commonly used substrata in a controlled experiment, recorded eel behaviour at the entrance of the ramp with infrared videography and validated the experimental results at a hydropower dam, where we also investigated the effects of ramp placement on performance. In the experiment on eel substratum selection, 40% of the eels passed in lanes with studded substratum, whereas only 21 and 5% passed using open weave and bristle substrata respectively. Video analysis revealed that the studded substratum attracted more approaches and initiated climbs than the other substrata, but once a climb had been initiated, passage success rates did not differ between substrata. Eels using the studded substratum climbed 26% faster than those using the bristle substratum and almost four times as fast as those climbing in the open weave. The superior performance of the studded substratum was supported by data from the field validation. Moreover, ramps positioned by the bank with low water velocities caught the most eels, but proximity to the dam had no effect on performance. To strengthen the European eel population, more juveniles need to reach their freshwater feeding grounds. A critical step to achieve this increase is to equip upstream passage solutions with suitable substrata and to optimize ramp placement at migration obstacles.”

Access the paper here, or contact any of the authors.

karl

Karl Filipsson, PhD-student at Karlstad University.

Karl Filipsson has recently joined the NRRV-research group. Here he writes about his previous work and what he intends to do as a PhD-student at Karlstad University:

My name is Karl Filipsson and I recently started my PhD in the River Ecology and Management Research Group (NRRV) at Karlstad University, where I am going to study the winter ecology of stream fishes in relation to climate change. I have a master’s degree in biology from the University of Gothenburg, with focus on aquatic and evolutionary ecology. Although I have a broad interest in fish ecology and behavior, I have developed a special interest for fish inhabiting streams. In my master project I studied the effect of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae on brown trout (Salmo trutta). The project mainly examined behavioral responses in the host fish, but growth and cardiorespiratory parameters were measured as well.

In my PhD I will use an experimental approach to look at the consequences of warmer winters on predator-prey interactions and early life-history performance in stream fishes. I will use brown trout and burbot (Lota lota) as model species. River ecosystems and associated fish populations have a significant role in providing important ecosystem services. Therefore, it is of great importance to acquire knowledge on the winter ecology of stream fishes under climate change. Hopefully, results from this project will not only elucidate how stream fishes are adapted to winter conditions and respond to environmental change, but will also provide information for stakeholders and decision makers on how to manage fish populations and stream ecosystems in a future influenced by global climate change.

In addition to research, I have a great interest in scientific outreach. I have previously been working at the science center Universeum in Gothenburg and as scuba diving guide, and I am very keen on taking on the challenge to communicate research to the broader public and to be teaching in higher education.”

Some of Karls previous work on the interaction between juvenile brown trout and frehswater pearl mussel larvae is published in the scientific articles Encystment of parasitic freshwater pearl mussel (Margaritifera margaritifera) larvae coincides with increased metabolic rate and haematocrit in juvenile brown trout (Salmo trutta) and Heavy loads of parasitic freshwater pearl mussel (Margaritifera margaritifera L.) larvae impair foraging, activity and dominance performance in juvenile brown trout (Salmo trutta L.).

 

flodparlmussla

Freshwater pearl mussels.

The paper “Heavy loads of parasitic freshwater pearl mussel (Margaritifera margaritifera L.) larvae impair foraging, activity and dominance performance in juvenile brown trout (Salmo trutta L.)”  by Karl Filipsson, Tina Petersson, Johan Höjesjö, John Piccolo, Joacim Näslund, Niklas Wengström, Martin Österling was recently published in Ecology of Freshwater Fish. In the abstract the authors write:

“The life cycle of the endangered freshwater pearl mussel (Margaritifera margaritifera) includes a parasitic larval phase (glochidia) on the gills of a salmonid host. Glochidia encystment has been shown to affect both swimming ability and prey capture success of brown trout (Salmo trutta), which suggests possible fitness consequences for host fish. To further investigate the relationship between glochidia encystment and behavioural parameters in brown trout, pairs (n = 14) of wild-caught trout (infested vs. uninfested) were allowed to drift feed in large stream aquaria and foraging success, activity, agonistic behaviour and fish coloration were observed. No differences were found between infested and uninfested fish except for in coloration, where infested fish were significantly darker than uninfested fish. Glochidia load per fish varied from one to several hundred glochidia, however, and high loads had significant effects on foraging, activity and behaviour. Trout with high glochidia loads captured less prey, were less active and showed more subordinate behaviour than did fish with lower loads. Heavy glochidia loads therefore may negatively influence host fitness due to reduced competitive ability. These findings have implications not only for management of mussel populations in the streams, but also for captive breeding programmes which perhaps should avoid high infestation rates. Thus, low levels of infestation on host fish which do not affect trout behaviour but maintains mussel populations may be optimal in these cases.”

Read the paper here. If you don’t have access to the journal’s content, email any of the authors.